Collocation methods for nonlinear convolution Volterra integral equations with multiple proportional delays
نویسندگان
چکیده
In this paper, we apply the collocation methods to a class of nonlinear convolution Volterra integral equations with multiple proportional delays (NCVIEMPDs). We shall present the existence, uniqueness and regularity properties of analytic solution for this type equation, and then analyze the convergence and superconvergence properties of the collocation solution. The numerical results verify our theoretical analysis. Crown Copyright 2012 Published by Elsevier Inc. All rights reserved.
منابع مشابه
Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
متن کاملCollocation Methods for A Class of Volterra Integral Functional Equations with Multiple Proportional Delays
In this paper, we apply the collocation methods to a class of Volterra integral functional equations with multiple proportional delays (VIFEMPDs). We shall present the existence, uniqueness and regularity properties of analytic solutions for this type of equations, and then analyze the convergence orders of the collocation solutions and give corresponding error estimates. The numerical results ...
متن کاملMultistep collocation method for nonlinear delay integral equations
The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...
متن کاملCollocation Methods for Pantograph-type Volterra Functional Equations with Multiple Delays
We analyze the optimal superconvergence properties of piecewise polynomial collocation solutions on uniform meshes for Volterra integral and integrodifferential equations with multiple (vanishing) proportional delays θj(t) = qjt (0 < q1 < · · · < qr < 1). It is shown that for delay integro-differential equations the recently obtained optimal order is also attainable. For integral equations with...
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 218 شماره
صفحات -
تاریخ انتشار 2012